Getting Started on Natural Language
Processing with Python

Nitin Madnani
nmadnani@ets.org

(Note: This is a completely revised version of the article that was originally
published in ACM Crossroads, Volume 13, Issue 4. Revisions were needed
because of major changes to the Natural Language Toolkit project. The code
in this version of the article will always conform to the very latest version of
NLTK (v2.0.2 as of August 2012). Although the code is always tested, it is
possible that a bug or two may have been introduced in the code during the
course of this revision. If you find any, please report them to the author. If
you are still using version 0.7 of the toolkit for some reason, please refer to
http://www.acm.org/crossroads/xrds13-4/natural_language.html).

1 Motivation

The intent of this article is to introduce the readers to the area of Natu-
ral Language Processing, commonly referred to as NLP. However, rather
than just describing the salient concepts of NLP, this article uses the Python
programming language to illustrate them as well. For readers unfamiliar
with Python, the article provides a number of references to learn how to
program in Python.

2 Introduction

2.1 Natural Language Processing

The term Natural Language Processing encompasses a broad set of techniques
for automated generation, manipulation and analysis of natural or human
languages. Although most NLP techniques inherit largely from Linguis-
tics and Artificial Intelligence, they are also influenced by relatively newer
areas such as Machine Learning, Computational Statistics and Cognitive
Science.

Before we see some examples of NLP techniques, it will be useful to
introduce some very basic terminology. Please note that as a side effect of

keeping things simple, these definitions may not stand up to strict linguistic
scrutiny.

e Token: Before any real processing can be done on the input text, it
needs to be segmented into linguistic units such as words, punctua-
tion, numbers or alphanumerics. These units are known as tokens.

e Sentence: An ordered sequence of tokens.

e Tokenization: The process of splitting a sentence into its constituent
tokens. For segmented languages such as English, the existence of
whitespace makes tokenization relatively easier and uninteresting.
However, for languages such as Chinese and Arabic, the task is more
difficult since there are no explicit boundaries. Furthermore, almost
all characters in such non-segmented languages can exist as one-character
words by themselves but can also join together to form multi-character
words.

e Corpus: A body of text, usually containing a large number of sen-
tences.

e Part-of-speech (POS) Tag: A word can be classified into one or more
of a set of lexical or part-of-speech categories such as Nouns, Verbs,
Adjectives and Articles, to name a few. A POS tag is a symbol repre-
senting such a lexical category - NN(Noun), VB(Verb), JJ(Adjective),
AT (Article). One of the oldest and most commonly used tag sets is
the Brown Corpus tag set. We will discuss the Brown Corpus in more
detail below.

e Parse Tree: A tree defined over a given sentence that represents the
syntactic structure of the sentence as defined by a formal grammar.

Now that we have introduced the basic terminology, let’s look at some com-
mon NLP tasks:

e POS Tagging: Given a sentence and a set of POS tags, a common
language processing task is to automatically assign POS tags to each
word in the sentences. For example, given the sentence The ball is
red, the output of a POS tagger would be The/AT ball/NN is/VB red/]].
State-of-the-art POS taggers [9] can achieve accuracy as high as 96%.
Tagging text with parts-of-speech turns out to be extremely useful for
more complicated NLP tasks such as parsing and machine translation,
which are discussed below.

e Computational Morphology: Natural languages consist of a very
large number of words that are built upon basic building blocks known

as morphemes (or stems), the smallest linguistic units possessing mean-
ing. Computational morphology is concerned with the discovery and
analysis of the internal structure of words using computers.

e Parsing: In the parsing task, a parser constructs the parse tree given
a sentence. Some parsers assume the existence of a set of grammar
rules in order to parse but recent parsers are smart enough to deduce
the parse trees directly from the given data using complex statistical
models [1]. Most parsers also operate in a supervised setting and re-
quire the sentence to be POS-tagged before it can be parsed. Statistical
parsing is an area of active research in NLP.

e Machine Translation (MT): In machine translation, the goal is to have
the computer translate the given text in one natural language to fluent
text in another language without any human in the loop. This is one
of the most difficult tasks in NLP and has been tackled in a lot of
different ways over the years. Almost all MT approaches use POS
tagging and parsing as preliminary steps.

2.2 Python

The Python programming language is a dynamically-typed, object-oriented
interpreted language. Although, its primary strength lies in the ease with
which it allows a programmer to rapidly prototype a project, its power-
ful and mature set of standard libraries make it a great fit for large-scale
production-level software engineering projects as well. Python has a very
shallow learning curve and an excellent online learning resource [11].

2.3 Natural Language Toolkit

Although Python already has most of the functionality needed to perform
simple NLP tasks, it’s still not powerful enough for most standard NLP
tasks. This is where the Natural Language Toolkit (NLTK) comes in [12].
NLTK is a collection of modules and corpora, released under an open-
source license, that allows students to learn and conduct research in NLP.
The most important advantage of using NLTK is that it is entirely self-
contained. Not only does it provide convenient functions and wrappers
that can be used as building blocks for common NLP tasks, it also provides
raw and pre-processed versions of standard corpora used in NLP literature
and courses.

3 Using NLTK

The NLTK website contains excellent documentation and tutorials for learn-
ing to use the toolkit [13]. It would be unfair to the authors, as well as to
this publication, to just reproduce their words for the sake of this article. In-
stead, I will introduce NLTK by showing how to perform four NLP tasks, in
increasing order of difficulty. Each task is either an unsolved exercise from
the NLTK tutorial or a variant thereof. Therefore, the solution and analysis
of each task represents original content written solely for this article.

3.1 NLTK Corpora

As mentioned earlier, NLTK ships with several useful text corpora that are
used widely in the NLP research community. In this section, we look at
three of these corpora that we will be using in our tasks below:

e Brown Corpus: The Brown Corpus of Standard American English is
considered to be the first general English corpus that could be used
in computational linguistic processing tasks [6]. The corpus consists
of one million words of American English texts printed in 1961. For
the corpus to represent as general a sample of the English language
as possible, 15 different genres were sampled such as Fiction, News
and Religious text. Subsequently, a POS-tagged version of the corpus
was also created with substantial manual effort.

e Gutenberg Corpus: The Gutenberg Corpus is a selection of 14 texts
chosen from Project Gutenberg - the largest online collection of free
e-books [5]. The corpus contains a total of 1.7 million words.

e Stopwords Corpus: Besides regular content words, there is another
class of words called stop words that perform important grammatical
functions but are unlikely to be interesting by themselves, such as
prepositions, complementizers and determiners. NLTK comes bun-
dled with the Stopwords Corpus - a list of 2400 stop words across 11
different languages (including English).

3.2 NLTK naming conventions

Before, we begin using NLTK for our tasks, it is important to familiarize
ourselves with the naming conventions used in the toolkit. The top-level
package is called n1tk and we can refer to the included modules by using
their fully qualified dotted names, e.g. nltk.corpus and nltk.utilities.
The contents of any such module can then be imported into the top-level
namespace by using the standard e ... construct in Python.

Listing 1: Exploring NLTK’s bundled corpora.

import the gutenberg collection

>>> fromnltk.corpus import gutenberg

what corpora are in the collection ?

>>> print gutenberg.fileids()

[’austen-emma.txt’, ’austen-persuasion.txt’,
’austen-sense.txt’, 'bible-kjv.txt’, 'blake-poems.txt’,
"bryant-stories.txt’, ’burgess-busterbrown.txt’,
’carroll-alice.txt’, ’chesterton-ball.txt’,
’chesterton-brown.txt’, ’chesterton-thursday.txt’,
’edgeworth-parents.txt’, 'melville-moby_dick.txt’,
'milton-paradise.txt’, 'shakespeare-caesar.txt’,
’shakespeare-hamlet.txt’, ’shakespeare-macbeth.txt’,
’whitman-leaves.txt’]

import FreqDist class

>>> fromnltk import FregDist

create frequency distribution object

>>> fd = FreqDist()

for each token in the relevant text, increment its counter

>>> for word in gutenberg.words(’ austen-persuasion.txt’):
fd.inc(word)

>>> print £d.N() # total number of samples

98171

>>> print £d.B() # number of bins or unique samples

6132

Get a list of the top 10 words sorted by frequency

>>> for word in fd.keys()[:10]:

.. print word, fd[word]

, 6750

the 3120

to 2775
2741

and 2739

of 2564

a 1529

in 1346

was 1330

;1290

3.3 Task 1: Exploring Corpora

NLTK is distributed with several NLP corpora, as mentioned before. We
define this task in terms of exploring one of such corpora.

Task: Use the NLTK corpus module to read the corpus austen-persuasion.

included in the Gutenberg corpus collection, and answer the following
questions:

e How many total words does this corpus have ?
¢ How many unique words does this corpus have ?
e What are the counts for the 10 most frequent words ?

Besides the corpus module that allows us to access and explore the bun-
dled corpora with ease, NLTK also provides the probability module that
contains several useful classes and functions for the task of computing
probability distributions. One such class is called FreqDist and it keeps
track of the sample frequencies in a distribution. Listing 1 shows how to
use these two modules to perform the first task.

Solution: Jane Austen’s book Persuasion contains 98171 total tokens and
6141 unique tokens. Out of these, the most common token is a comma,
followed by the word the. In fact, the last part of this task is the perfect
segue for one of the most interesting empirical observations about word
occurrences. If we were to take a large corpus, count up the number of
times each word occurs in that corpus and then list the words according
to the number of occurrences (starting with the most frequent), we would
be able to observe a direct relationship between the frequency of a word
and its position in the list. In fact, Zipf claimed this relationship could
be expressed mathematically, i.e. for any given word, fr = k, where f
is the frequency of that word, r is the rank, or the position of the word in
the sorted list, and k is a constant. So, for example, the 5" most frequent
word should occur exactly two times as frequently as the 10" most frequent
word. In NLP literature, the above relationship is usually referred to as
Zipf’s Law.

Even though the mathematical relationship prescribed by Zipf’'s Law
may not hold exactly, it is useful to describe how words are distributed
in human languages - there are a few words that are very common, a few
that occur with medium frequency and a very large number of words that
occur very rarely. It’s simple to extend the last part of Task 1 and graph-
ically visualize this relationship using NLTK as shown in Listing 1a. The
corresponding log-log plot, shown in Figure 1, clearly illustrates that the
relationship does hold, to a large extent, for our corpus.

txt,

Listing 1a: Using NLTK to plot Zipf’s Law.

~

>>> nltk.corpus gutenberg

>>> nltk FregDist

For plotting, we need matplotlib (get it from the NLTK download page)
>>> matplotlib

>>> matplotlib.pyplot as plt

Count each token in each text of the Gutenberg collection
>>> fd = FreqDist()
>>> text in gutenberg.fileids():
word in gutenberg.words(text):
fd.inc(word)

Initialize two empty lists which will hold our ranks and frequencies
>>> ranks = []
>>> freqs = []

Generate a (rank, frequency) point for each counted token and
and append to the respective lists, Note that the iteration
over fd is automatically sorted.
>>> rank, word in enumerate(£fd):
ranks.append(rank+1)
fregs.append(fd[word])

Plot rank vs frequency on a log—log plot and show the plot
>>> plt.loglog(ranks, freqs)

>>>plt.ylabel(’rank(r)’, fontsize=14, fontweight="bold’)
>>> plt.grid(True)
>>> plt.show()

>>> plt.xlabel(’ frequency(£f)’, fontsize=14, fontweight="bhold")

10°

rank (r)

o0 | | | |

10° 10! 10? 107 10* 10°
frequency (f)

Figure 1: Does Zipf’s Law hold for the Gutenberg Corpus ?

3.4 Task 2: Predicting Words

Now that we have learnt how to explore a corpus, let’s define a task that
can put such explorations to use.

Task: Train and build a word predictor, i.e., given a training corpus, write
a program that can predict the word that follows a given word. Use this
predictor to generate a random sentence of 20 words.

To build a word predictor, we first need to compute a distribution of two-
word sequences over a training corpus, i.e., we need to keep count the oc-
currences of a word given the previous word as a context for that word.
Once we have computed such a distribution, we can use the input word
to find a list of all possible words that followed it in the training corpus
and then output a word at random from this list. To generate a random
sentence of 20 words, all we have to do is to start at the given word, pre-
dict the next word using this predictor, then the next and so on until we
get a total of 20 words. Listing 2 illustrates how to accomplish this easily
using the modules provided by NLTK. We use Jane Austen’s Persuasion as
the training corpus.

Solution: The 20 word output sentence is, of course, not grammatical but

Listing 2: Predicting words using NLTK.

>>> nltk.corpus gutenberg
>>> nltk ConditionalFregDist
>>> random choice

Create distribution object
>>> cfd = ConditionalFreqgDist()

For each token, count current word given previous word

>>> prev_word = None

>>> word in gutenberg.words(’austen-persuasion.txt’):
cfd[prev_word].inc(word)
prev_word = word

Start predicting at the given word, say "therefore’
>>>word = ’therefore’
>>>i=1

Find all words that can possibly follow the current word
and choose one at random
>>> i<20:
word,

lwords = cfd[word].samples()

follower = choice(lwords)

word = follower

i+=1

therefore it known of women ought . Leave me so well

placed in five altogether well placed themselves delighted
NS

every two word sequence will be because the training corpus that we used
for estimating our conditional frequency distribution is grammatical and
because of the way that we estimated the conditional frequency distribu-
tion. Note that for our task we used only the previous word as the context
for our predictions. It is certainly possible to use the previous two or, even,
three words as the prediction context.

3.5 Task 3: Discovering Part-Of-Speech Tags

NLTK comes with an excellent set of modules to allow us to train and build
relatively sophisticated POS taggers. However, for this task, we will restrict
ourselves to a simple analysis on an already tagged corpus included with
NLTK.

Task: Tokenize the included Brown Corpus and build one or more suitable
data structures so that you can answer the following questions:

e What is the most frequent tag ?
e Which word has the most number of distinct tags ?
e What is the ratio of masculine to feminine pronouns ?

e How many words are ambiguous, in the sense that they appear with
at least two tags ?

For this task, it is important to note that there is are two versions of
the Brown corpus that comes bundled with NLTK: the first is the raw cor-
pus that we used in the last two tasks, and the second is a tagged version
wherein each token of each sentence of the corpus has been annotated with
the correct POS tags. Each sentence in this version of a corpus is repre-
sented as a list of 2-tuples, each of the form (token, tag). For example, a
sentence like “the ball is green”, from a tagged corpus, will be represented
inside NLTK as the list [("the’,’at’), (’ball’,’nn’), (’is’,’vbz’),
(’green’,’jj’)1].

As explained before, the Brown corpus comprises of 15 different sec-
tions, represented by the letters ‘a” through 'r’. Each of the sections repre-
sents a different genre of text and for certain NLP tasks not discussed in
this article, this division proves very useful. Given this information, all we
should have to do is build the data structures to analyze this tagged corpus.
Looking at the kinds of questions that we need to answer, it will be suffi-
cient to build a frequency distribution over the POS tags and a conditional
frequency distribution over the tags using the tokens as the context. Note
that NLTK also allows us to directly import the FreqDist and Conditional-
FreqDist classes from the top-level namespace. Listing 3 shows how to do

10

this using NLTK.

Solution: The most frequent POS tag in the Brown corpus is, unsurpris-
ingly, the noun (NN). The word that has the most number of unique tags
is, in fact, the word that. There are almost 3 times as many masculine pro-
nouns in the corpus as feminine pronouns and, finally, there are as many as
8700 words in the corpus that can be deemed ambiguous - a number that
should indicate the difficulty of the POS-tagging task.

3.6 Task 4: Word Association

The task of free word association is a very common one when it comes to
psycholinguistics, especially in the context of lexical retrieval - human sub-
jects respond more readily to a word if it follows another highly associated
word as opposed to a completely unrelated word. The instructions for per-
forming the association are fairly straightforward - the subject is asked for
the word that immediately comes to mind upon hearing a particular word.

Task: Use a large POS-tagged text corpus to perform free word association.
You may ignore function words and assume that the words to be associated
are always nouns.

For this task, we will use the concept of word co-occurrences, i.e., counting
the number of times words occur in close proximity with each other and
then using these counts to estimate the degree of association. For each to-
ken in each sentence, we will look at all following tokens that lie within
a fixed window and count their occurrences in this context using a con-
ditional frequency distribution. Listing 4 shows how we accomplish this
using Python and NLTK with a window size of 5 and the POS-tagged ver-
sion of the Brown corpus.

Solution: The “word associator” that we have built seems to work sur-
prisingly well, especially when compared to the minimal amount of effort
that was required. (In fact, in the context of folk psychology, our associator
would almost seem to have a personality, albeit a pessimistic and misog-
ynistic one). The results of this task should be a clear indication of the
usefulness of corpus linguistics in general. As a further exercise, the as-
sociation task can be easily extended in sophistication by utilizing parsed
corpora and using information-theoretic measures of association [3].

11

Listing 3: Analyzing tagged corpora using NLTK.

>>> nltk.corpus brown

>>> nltk FreqDist, ConditionalFregDist
>>> fd = FreqgDist()

>>> cfd = ConditionalFregDist()

for each tagged sentence in the corpus, get the (token, tag) pair and update
both count(tag) and count(tag given token)

>>> sentence in brown.tagged_sents():
(token, tag) in sentence:
fd.inc(tag)

cfd[token].inc(tag)

>>> fd.max() # The most frequent tag is ...

’ NN ’

>>>wordbins = [] # Initialize a list to hold (numtags,word) tuple

append each (n(unique tags for token),token) tuple to list

>>> token in cfd.conditions():
wordbins.append((cfd[token].B(), token))

sort tuples by number of unique tags (highest first)

>>> wordbins.sort(reverse=True)

>>> wordbins [0] # token with max. no. of tags is ...
(12, ’that’)

>>>male = ["he’,’his’,’him’,”himself’] # masculine pronouns
>>> female = ["she’,’hers’,"her’, herself’] # feminine pronouns
>>>n_male, n_female = 0, 0 # initialize counters
total number of masculine samples
>>> minmale:

n_male += c£d[m].N()

total number of feminine samples
>>> fin female:
n_female += c£fd[£].N()

>>> float(n_male)/n_female # calculate required ratio
3.257
>>>n_ambiguous =0
>>> (ntags, token) in wordbins:
ntags > 1:

n_ambiguous +=1

>>> n_ambiguous # number of tokens with more than a single POS tag
8729

12

Listing 4: Performing free word association using NLTK.

>>> nltk.corpus brown, stopwords
>>> nltk ConditionalFreqDist

>>> cfd = ConditionalFreqgDist()

get a list of all English stop words

>>> stopwords_list = stopwords.words(’english’)

define a function that returns true if the input tag is some form of noun
>>> is_noun(tag):
tag.lower() [’nn’,’nns’,’nn$’,’nn-t1’, ’nn+bez’,\
‘nn+hvz’, ’nns$’,’np’,’np$’, ’np+bez’,’ nps’,\
'nps$’,’nr’,’np-tl’,’ nrs’,’ nr$’]

count nouns that occur within a window of size 5 ahead of other nouns
>>> sentence in brown.tagged_sents():
(index, tagtuple) in enumerate(sentence):
(token, tag) = tagtuple
token = token.lower()
token stopwords_list is_noun(tag):
window = sentence[index+1:index+5]
(window_token, window_tag) in window:
window_token = window_token.lower()
window_token stopwords_list \
is_noun(window_tag):
cfd[token].inc(window_token)

OK. We are done ! Let’s start associating !

>>> cfd[’left’].max()
right

>>> cfd[’life’].max()
death

>>> cfd[’man’].max()
woman

>>> cfd[’woman’].max()
world

>>> cfd[’boy’].max()
girl

>>> cfd[’girl’].max()
trouble

>>> cfd[’male’].max()
female

>>> cfd[’ball’].max()
player

>>> cfd[’doctor’].max()
bills

>>> cfd[’road’].max()
block

-

13

4 Discussion

Although this article used Python and NLTK to provide an introduction
to basic natural language processing, it is important to note that there are
other NLP frameworks, besides NLTK, that are used by the NLP academic
and industrial community. A popular example is GATE (General Archi-
tecture for Text Engineering), developed by the NLP research group at the
University of Sheffield [4]. GATE is built on the Java and provides, besides
the framework, a general architecture which describes how language pro-
cessing components connect to each other and a graphical environment.
GATE is freely available and is primarily used for text mining and infor-
mation extraction.

Every programming language and framework has its own strengths
and weaknesses. For this article, we chose to use Python because it pos-
sesses a number of advantages over the other programming languages
such as: (a) High readability (b) Easy to use object-oriented paradigm (c)
Easily extensible (d) Strong unicode support and, (e) A powerful standard
library. It is also extremely robust and efficient and has been used in com-
plex and large-scale NLP projects such as a state-of-the-art machine trans-
lation decoder [2].

5 Conclusions

Natural Language Processing is a very active field of research and attracts
many graduate students every year. It allows a coherent study of the hu-
man language from the vantage points of several disciplines - Linguis-
tics, Psychology, Computer Science and Mathematics. Another, perhaps
more important, reason for choosing NLP as an area of graduate study is
the sheer number of very interesting problems with well-established con-
straints but no general solutions. For example, the original problem of ma-
chine translation which spurred the growth of the field remains, even after
two decades of intriguing and active research, one of the hardest problems
to solve. There are several other cutting-edge areas in NLP that currently
draw a large amount of research activity. It would be informative to discuss
a few of them here:

e Syntax-based Machine Translation: For the past decade or so, most
of the research in machine translation has focussed on using statisti-
cal methods on very large corpora to learn translations of words and
phrases. However, more and more researchers are starting to incor-
porate syntax into such methods [10].

e Automatic Multi-document Text Summarization: There are a large
number of efforts underway to use computers to automatically gener-

14

ate coherent and informative summaries for a cluster of related docu-
ments [8]. This task is considerably more difficult compared to gener-
ating a summary for a single document because there may be redun-
dant information present across multiple documents.

e Computational Parsing: Although the problem of using probabilistic
models to automatically generating syntactic structures for a given
input text has been around for a long time, there are still significant
improvements to be made. The most challenging task is to be able to
parse, with reasonable accuracy, languages that exhibit very different
linguistic properties when compared to English, such as Chinese [7]
and Arabic.

Python and the Natural Language Toolkit (NLTK) allow any programmer
to get acquainted with NLP tasks easily without having to spend too much
time on gathering resources. This article is intended to make this task even
easier by providing working examples and references for anyone interested
in learning about NLP.

6 Biography

Nitin Madnani is a research scientist at Educational Testing Service. He
was previously a Ph.D. student in the Department of Computer Science
at University of Maryland, College Park and a graduate research assistant
with the Institute for Advanced Computer Studies. He works in the area of
statistical natural language processing, specifically paraphrasing, machine
translation and text summarization. His language of choice for all tasks,
big or small, is Python.

References

[1] Dan Bikel. 2004. On the Parameter Space of Generative Lexicalized Statis-
tical Parsing Models. Ph.D. Thesis.
http://www.cis.upenn.edu/~dbikel/papers/thesis.pdf

[2] David Chiang. 2005. A hierarchical phrase-based model for statistical ma-
chine translation. Proceedings of ACL.

[3] Kenneth W. Church and Patrick Hanks. 1990. Word association norms,
mutual information, and lexicography. Computational Linguistics. 16(1).

[4] H. Cunningham, D. Maynard, K. Bontcheva. and V. Tablan. 2002.
GATE: A Framework and Graphical Development Environment for Robust
NLP Tools and Applications. Proceedings of the 40th Anniversary Meet-
ing of the Association for Computational Linguistics.

15

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

Michael Hart and Gregory Newby. Project Gutenberg. Proceedings of
the 40th Anniversary Meeting of the Association for Computational
Linguistics.

http://www.gutenberg.org/wiki/Main_Page

H. Kucera and W. N. Francis. 1967. Computational Analysis of Present-
Day American English. Brown University Press, Providence, RIL

Roger Levy and Christoper D. Manning. 2003. Is it harder to parse
Chinese, or the Chinese Treebank ? Proceedings of ACL.

Dragomir R. Radev and Kathy McKeown. 1999. Generating natural
language summaries from multiple on-line sources. Computational Lin-
guistics. 24:469-500.

Adwait Ratnaparkhi 1996. A Maximum Entropy Part-Of-Speech Tagger.
Proceedings of Empirical Methods on Natural Language Processing.

Dekai Wu and David Chiang. 2007. Syntax and Structure in Statistical
Translation. Workshop at HLT-NAACL.

The Official Python Tutorial.
http://docs.python.org/tut/tut.html

Natural Language Toolkit. http://nltk.sourceforge.net

NLTK Tutorial. http://nltk.sourceforge.net/index.php/Book

16

